
Math 3435: Things to know for the midterm
1. How to determine if a PDE is nonlinear, linear homogeneous, linear inhomogeneous.

2. How linearity of a PDE affects solutions (that you can add solutions to get new solutions, find solution to an
inhomogeneous linear PDE as a sum of a particular solution and solutions to the corresponding homogeneous
PDE, etc.).

3. How to solve a first order linear PDE by using characteristics. The book (Section 1.2) gives what it calls the
“geometric method” and the “coordinate method” – knowing either one is fine. You should be able to do constant
and variable coefficient cases, and be able to find a solution given initial data.

4. What well-posed means (existence, uniqueness and stability of solutions). You should also know that equations
can be well-posed for a region and ill-posed for another region (eg heat equation is well-posed for t > 0 and
ill-posed for t < 0). You should know that there are different ways to measure stability, but you do not need to
know the two ways we measured distance between data and solutions – if you were asked to say anything about
stability you would be given information about the distance in the problem.

5. The basic second order equations: heat/diffusion ut = kuxx, wave utt = c2uxx, and Laplace uxx = 0. The fact
that time-invariant solutions of heat and wave equations are solutions of the Laplace equation. The fact that
derivatives of solutions to these equations are also solutions.

6. The fact that all linear 2nd order PDE are essentially equivalent to one of the three basic equations, which are
referred to as parabolic (heat eqn), hyperbolic (wave) and elliptic (Laplace). You do not need to be able to do
the change of variables that shows this.

7. For a given 2nd order linear PDE, how to determine whether it is parabolic, hyperbolic or elliptic using the sign
of the determinant of the matrix of 2nd order coefficients (or an equivalent formula). You should be able to do
this on the whole plane in the constant coefficient case and also be able to find regions of the plane on which
different behaviors occur in the variable coefficient case.

8. The general solution formula u(x, t) = f (x + ct) + g(x − ct) for the wave equation, and that (if c > 0) the term
f (x+ct) represents a wave moving left and g(x−ct) a wave moving right. You should be able to use this equation
to solve problems, but you do not need to know how to derive from it the formula for the solution with given
initial data.

9. How to use the formula for the solution of the wave equation with given initial data. The formula will be on the
formula sheet (last page of this document).

10. The fact that information propagated by the wave equation moves at speed ≤ c. You need to know how to use
this in problems and how it is expressed in the formula for the solution from initial data.

11. How to draw graphs of solutions of the wave equation from initial data.

12. That the wave equation conserves energy in the sense that E′(t) = 0 (see formula sheet for the energy E(t)), and
how to verify this using the equation and integration by parts.

13. How to use energy to show that solutions of the wave equation are unique.

14. What the maximum principle for the heat equation says, and how to use it to show that a solution is bounded
from bounds on its initial and boundary data. You do not need to know the proof of the maximum principle.

15. How to use the maximum principle to show that solutions of the heat equation are unique.

16. How to use energy in the heat equation to show that solutions are unique.

17. How to use the solution formula for the heat equation to solve problems when given initial data. How to write
solutions in terms of the error function.



18. The following basic features of the heat and wave equations. Wave equation has finite propagation speed,
information is transported, it is well-posed for all time, has energy conservation, and singularities move along
characteristic lines. Heat equation has infinite propagation speed, information is lost, it is well-posed for t > 0
and ill-posed for t < 0, energy and solutions decay in time and are instantly smooth (there are no singularities).

19. How to use odd or even reflection to solve the heat equation on (0,∞) with initial data and Dirichlet or Neumann
boundary data. How to write these solutions in terms of the error function.

20. How to use odd or even reflection to solve the wave equation on (0,∞) with initial data and Dirichlet or Neumann
boundary data. How to graph these solutions.

21. How to solve inhomogeneous heat and wave equations on R and the half-line (0,∞). How to solve heat and
wave equations with inhomogeneous boundary data by subtracting suitable functions to reduce to the case of an
inhomogeneous PDE with homogeneous (Dirichlet or Neumann) boundary data.

22. How to perform separation of variables to convert a PDE to an eigenvalue problem.

23. How to solve the eigenvalue problem X′′n = −λnXn for various boundary conditions. This was built up over
several sections in Chapters 4 and 5 in the book, but at the end you should know that:

(a) If the boundary conditions are symmetric, meaning that for f and g satisfying the boundary conditions
we have f ′(x)g(x) − f (x)g′(x)

∣∣∣l
0 = 0, then the eigenvalues are real, the eigenfunctions can be chosen to be

real, and the eigenfunctions for distinct eigenvalues are orthogonal. The computation that justifies this is
(λ1 − λ2)

∫ l
0 f g =

∫ l
0 f g′′ − f ′′g = f g′ − f g′

∣∣∣l
0 = 0. This happens in particular for Dirichlet, Neumann,

Periodic, and Robin boundary conditions.

(b) When the eigenfunctions Xn are orthogonal one can find the coefficients of h(x) =
∑∞

0 anXn from an =

〈h, Xn〉/〈Xn, Xn〉. It is useful to know the values of 〈Xn, Xn〉 for the standard (Dirichlet, Neumann, Periodic,
Robin) cases.

(c) If the boundary conditions are Dirichlet or Neuman or mixed Dirichlet and Neumann (i.e. Dirichlet at
one end, Neumann at the other) then the eigenvalues can only be positive and the eigenfunctions are
trigonometric with frequency

√
λn. The same is true for periodic boundary conditions. You should know

what these eigenfunctions and eigenvalues are or how to find them explicitly. In the periodic case you
should know the complex form as well as the real form.

(d) If the boundary conditions are Robin there can be 0,1 or 2 non-positive eigenvalues, but you only need to
know the conditions a0 + al = −a0al for a zero eigenvalue, 0 < a0 + al < −a0al for exactly one negative
eigenvalue and a0 + al > −a0al for no negative eigenvalues. All the rest are positive, and in fact λn is in(
n2π2l−2, (n+1)2π2l−2) with λn−n2π2l−2 → 0 as n→ ∞. Equations for the eigenfunctions and eigenvalues

are on the formula sheet.

24. A sine expansion of f on [0, l] is equivalent to taking the odd reflection to [−l, l] then the 2l-periodic extension to
R, then expanding this function on R. The cosine expansion is the same but for the even reflection of f to [−l, l],
and the “full Fourier” expansion is simply the 2l-periodic extension of f from [−l, l]. These are continuous if
f vanishes at the endpoints (sine series, Dirichlet case), f ′ vanishes at the endpoints (cosine series, Neumann
case), or f is periodic (full Fourier series, periodic case), respectively.

25. We determined some conditions under which the Fourier series
∑∞

n=0
〈 f ,Xn〉

〈Xn,Xn〉
Xn for a function f converges, for

three different notions of convergence. Let fN be the N th partial sum of this series. Then the conditions are:

(a) If f , f ′ and f ′′ exist and are continuous on the interval and f satisfies the boundary conditions for the
eigenfunctions then the Fourier series converges to f uniformly, meaning that the maximum of | f − fN |

over the interval goes to 0 as N → ∞.

(b) If
∫
| f |2 < ∞ on the interval then fN → f in L2, meaning that

∫
| f − fN |

2 → 0 as N → ∞. This does not
imply convergence at any particular point.
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(c) If f and f ′ are piecewise continuous on the interval and the series is one of the sine, cosine or full Fourier
series then fN converges pointwise. The limit of fN(x) is 1

2
(
limy→x− f (y) + limy→x+ f (y)

)
. In particular, at

continuity points of f , fN(x) → f (x). Note that at the boundary points the limit may be determined using
the odd, even, or periodic extension of f , so if f does not satisfy the boundary conditions of the series then
the series will not converge at the boundary.

(d) At a jump discontinuity point, which may arise at a boundary point if f does not satisfy the boundary
conditions of the eigenfunctions Xn, we see a Gibbs phenomenon. In this case the values of fN(x) differ
from those of f by a fixed multiple of the jump at some point near the jump (so uniform convergence
fails), and as N → ∞ the point at which the Gibbs phenomenon occurs moves toward the jump location
(permitting pointwise convergence to hold).

(e) A basic tool for analyzing the behavior of the sum of the Fourier series is the Dirichlet kernel KN(θ) =

sin((N + 1
2 )θ)/ sin(θ/2), because the values of fN(x) can be written using an integral of f against a translate

and rescaling of KN . In the case of the full Fourier series on (−π, π) we have fN(x) = 1
2π

∫ π

−π
KN(x−y) f (y)dy.

The function KN(θ) has 1
2π

∫ π

−π
KN(θ)dθ = 1.

26. Since we can Fourier expand a piecewise differentiable function with respect to our basis of eigenfunctions, we
can always expand u(x, t) =

∑
n an(t)Xn(x) for each t for a suitable basis Xn. As far as solving the PDE goes,

there are then two cases

(a) If u(x, t) satisfies the same (homogeneous) boundary conditions as Xn(x) for each t we can simply differen-
tiate inside the series to get an ODE for an(t). This was, in effect, what happened in Chapter 4, where we
simply wrote the series as

∑
n cnTn(t)Xn(x), where Tn(t) was the solution of the ODE in t that came from

separation of variables, and the cn came from the Fourier expansion of the initial data as in the first few
sections of Chapter 5.

(b) If the boundary conditions for u are not the same as those for Xn then the previous method fails, but we
can still expand each of the functions and derivatives in the PDE and integrate by parts in the Fourier
coefficient formulas for the x derivatives to get (generally inhomogeneous) ODEs for the an(t). Solving
these gives a series solution for the PDE. In general, our approach to these problems was to:

i. Given a PDE with inhomogeneous symmetric boundary conditions, take at each boundary point the
corresponding homogeneous condition and compute the corresponding basis Xn of eigenfunctions.

ii. Expand all derivatives with respect to this basis Xn and write the PDE in terms of the coefficients in
these expansions.

iii. Compute the coefficients for the expansions using the formula for Fourier coefficients, integrating by
parts and using the given inhomogeneous boundary conditions to obtain the boundary terms in these
computations.

iv. Combine the last two steps to give ODEs for the coefficients in the expansion of the solution function
and solve these ODEs. Usually the initial data for the ODEs will be obtained by Fourier expansion of
the initial data for the PDE.

v. Substitute the ODE solutions into the series to obtain the solution to the PDE.

27. It is also possible sometimes to modify an inhomogeneous PDE or a PDE with inhomogeneous boundary data
by subtracting a simple function or a known solution or similar so as to make the inhomogeneity or boundary
data simpler. This is not critical to know, but it could save you a lot of time on some problems.

28. The Laplace equation ∆u = 0 has a maximum principle. This says that if ∆u = 0 on a bounded connected set D
and is continuous on D ∪ ∂D then both the maximum and minimum of u on D are achieved on ∂D. Moreover,
if either the maximum or the minimum of u are achieved inside D then u must be constant. Note that this result
applies to solution of the Laplace equation, not the Poisson equation.

29. As a consequence of the maximum principle for the Laplace equation, on a bounded connected open set D there
is at most one solution to ∆u = f on D, u = h on ∂D where u is continuous on D∪ ∂D. The maximum principle
also implies a stability result saying that if ∆u1 = f = ∆u2 and u1 − u2 is small on the boundary then it is small
everywhere, because the maximum of |u1 − u2| occurs on the boundary.
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30. How to solve the Laplace and Poisson equations on a rotationally symmetric region (disc or annulus in R2 and
ball or spherical annulus in R3) by using polar coordinates to reduce to an ODE. The polar form of ∆ is on
the formula sheet. Note that when doing a disc or ball there is implicitly a boundedness/continuity boundary
condition at r = 0.

31. How to solve Laplace and Poisson equations on rectangular regions in two and three dimensions. The method
is similar to that in 26(a), with an extra initial step.

(a) Break u into a sum (u1 + u2 in dimension 2 or u1 + u2 + u3 in dimension 3) so that for u j the boundary
conditions are homogeneous in all but the jth direction.

(b) Solve for each u j by expanding in Fourier series for each of the directions with homogeneous boundary
conditions (in the R3 case this is a double Fourier series); This involves some of the steps from 23 above.

(c) For each u j, solve for the direction with inhomogeneous boundary conditions to get a series for u j; you
then have a series for each u j, and adding them gives a solution for the Laplace equation.

(d) For example, for u1 inR2 you have u1 =
∑

n Xn(x)Yn(y) where Yn(y) are the eigenfunctions with eigenvalues
λn. Solve for Xn(x) using X′′ = λnX from the separated variables (obtaining hyperbolic functions); you
will need to use the inhomogeneous boundary data on the x = 0, x = a boundaries and Fourier wrt the y
variable to get the endpoint data for this ODE.

(e) Similarly, for u1 in R3 you have u1 =
∑

n
∑

m Xn,m(x)Yn(y)Zm(z) with Yn(y), λn the eigenfunctions and
eigenvalues for the y direction and Zm(z), µm those for the z-direction. This is a double Fourier series and
you must solve X′′n,m = (λn + µm)Xn,m with endpoint data from decomposing the boundary values on x = 0
and x = a into double Fourier series in y and z.
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Math 3435: Formula sheet
Homogeneous wave equation on R.

u(x, t) =
1
2
(
φ(x + ct) + φ(x − ct)

)
+

1
2c

∫ x+ct

x−ct
ψ(y)dy

Homogeneous wave equation on (0,∞) with Dirichlet boundary data if 0 < x < ct.

u(x, t) =
1
2
(
φ(x + ct) − φ(ct − x)

)
+

1
2c

∫ x+ct

ct−x
ψ(y)dy

Wave equation on (0,∞) with Neumann boundary data if 0 < x < ct

u(x, t) =
1
2
(
φ(x + ct) + φ(ct − x)

)
+

1
c

∫ ct−x

0
ψ(y)dy +

1
2c

∫ x+ct

ct−x
ψ(y)dy

Energy in wave equation

E(t) =

∫
u2

t (y, t) + c2u2
x(y, t) dy

Inhomogeneity in wave equation

Add
1
2c

"
D

f , where D is the domain of dependence, for inhomogeneity in the PDE

Add h(t − x/t), for a suitable h to remove an inhomogeneity in the boundary data.

Fundamental solution (or source) for heat equation if t > 0

S (x, t) =
1
√

4πkt
e−x2/4kt

Inhomogeneous heat equation on R for t > 0

u(x, t) =

∫ ∞

−∞

S (x − y, t)φ(y) dy +

∫ t

0

∫ ∞

−∞

S (x − y, t − s) f (y, s) dy ds

Homogeneous heat equation on (0,∞) with Dirichlet boundary data for t > 0

u(x, t) =

∫ ∞

0

(
S (x − y, t) − S (x + y, t)

)
φ(y) dy

Homogeneous heat equation on (0,∞) with Neumann boundary data for t > 0

u(x, t) =

∫ ∞

0

(
S (x − y, t) − S (x + y, t)

)
φ(y) dy

Energy in heat equation

E(t) =

∫
u2(y, t) dy

Error function

Erf(x) =
2
√
π

∫ x

0
e−p2

dp

Eigenvalues and eigenfunctions for Robin boundary problem X′(0) = a0X(0), X′(l) = −alX(l).

Xn(x) = cos(
√
λnx) +

a0
√
λn

sin(
√
λnx) with λn a root of (λn − a0al) tan(

√
λnl) = (a0 + al)

√
λn

Xn(x) = cosh(
√
λnx) +

a0
√
λn

sinh(
√
λnx) with λn a root of (λn + a0al) tanh(

√
λnl) = −(a0 + al)

√
λn
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Polar form of the Laplacian in R2 and R3, valid for r > 0

∆2 =
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2

∆3 =
∂2

∂r2 +
2
r
∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂φ2
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